
Principal Component Analysis

UBCO — DATA 311



Motivation

▶ Changing gears to dimensionality reduction, and in particular an
unsupervised method for doing so.

▶ We will eventually bring this back around to supervised learning
in the next lecture

▶ Note: dimensionality reduction is NOT (necessarily) the same as
variable selection/feature reduction/etc. This will hopefully
become clear while we progress...
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Motivation

▶ Where we’ll go with this on the application side...

▶ The heptathlon is a track and field competition with several
(seven, specifically) running, throwing, and jumping events.

▶ The scoring system is...complex (we will outline it later). Can we
use this particular form of dimensionality reduction to devise a
‘simpler’ scoring system?

▶ But first, let’s get technical...
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Basic Idea

▶ We have p predictors X1,X2, . . . ,Xp

▶ We will seek p ‘new’ variables, say Z1,Z2, . . . ,Zp that

1. are linear combinations of X1,X2, . . . ,Xp

2. are uncorrelated (that is, Cor(Zj ,Zk) = 0 for all j ̸= k)
3. provide the bulk of the variation (aka, information) in

X1,X2, . . . ,Xp within the first few Zj ’s

Jeffrey L. Andrews Lecture (Sub) DATA 311 PCA 4 / 1



Simple Bivariate Example

▶ Suppose we have the following data
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Simple Bivariate Example

▶ We can note

> cov(cbind(x1, x2))

x1 x2

x1 7.616567 14.78788

x2 14.787881 29.46383

> cor(cbind(x1, x2))

x1 x2

x1 1.0000000 0.9871468

x2 0.9871468 1.0000000
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Simple Bivariate Example

▶ Now, suppose we create two new variables as linear combos of
X1 and X2, namely...
▶ Z1 = .45X1 + .90X2

▶ Z2 = .90X1 − .45X2

▶ Note that with our current toolbox, this would seem to be a
fairly random choice of coefficients for the linear combos...but
let’s see what the transformed data looks like...
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Simple Bivariate Example

▶ Scatterplot of Z1 and Z2
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Simple Bivariate Example

▶ And further note

> cov(cbind(z1, z2))

z1 z2

z1 37.3862401 0.1354968

z2 0.1354968 0.1576611

> cor(cbind(z1, z2))

z1 z2

z1 1.00000000 0.05580986

z2 0.05580986 1.00000000
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Some Linear Algebra

▶ A square p × p matrix A is said to have an eigenvalue λ with
corresponding eigenvector γ ̸= 0⃗ if

Aγ = λγ

▶ If A is symmetric, then A has p eigenvalues λ1, λ2, . . . , λp and p
corresponding eigenvectors γ1,γ2, . . . ,γp

▶ Example on board...
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Some Linear Algebra

▶ If A is p × p symmetric with eigenvalues, then we can write

A = PΛPT

where all matrices are p × p.

▶ Further, note that

P = [γ1 γ2 . . . γp]

▶ and Λ is a diagonal matrix with the eigenvalues λ1, λ2, . . . , λp

along the diag.
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Some Linear Algebra

▶ Also, PPT = PTP = Ip, AKA the columns of P are orthonormal

▶ AKA, γT
j γk = 0 for all j ̸= k and γT

j γ j = 1

▶ Repeat example in matrix form on board...
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Some Linear Algebra

▶ A symmetric p × p matrix A is positive semi-definite (psd) if

c⃗TAc⃗ ≥ 0 ∀ c⃗

▶ If A is psd, then λi ≥ 0 for all i .

▶ Note that covariance matrices are psd, and therefore have p
non-negative eigenvalues.
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Principal Components

▶ Recall from beginning of these slides...

▶ We will seek p ‘new’ variables, say Z1,Z2, . . . ,Zp that

1. are linear combinations of X1,X2, . . . ,Xp

2. are uncorrelated (that is, Cor(Zj ,Zk) = 0 for all j ̸= k)
3. provide the bulk of the variation (aka, information) in

X1,X2, . . . ,Xp within the first few Zj ’s
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Principal Components

▶ Suppose covariance matrix Σ has eigenvalues ordered such that
λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 with corresponding eigenvectors
γ1,γ2, . . . ,γp.

▶ It can be shown that γ1 (aka, the eigenvector corresponding to
the largest eigenvalue of Σ) provides coefficients such that
Var(γT

1 X) is maximized subject to the constraint γT
1 γ1 = 1

▶ And furthermore, γ2 maximizes Var(γT
2 X) subject to γT

2 γ2 = 1
AND γT

2 γ1 = 0

▶ Annnnnd so on for the remaining eigenvectors...
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Principal Components
▶ In summary, the eigendecomposition of Σ provides the solution

for our desired properties for principal components. AKA, we can
define Zj = γ jX .

▶ So the eigenvectors provide the coefficients for the linear combo,
but the eigenvalues are interesting too!

▶ Note that the diagonal of Σ contains the variance of each
variable. Summing that up, σ2

1 + σ2
2 + · · ·+ σ2

p, provides a
measure of ‘total variance’

▶ It can be shown through matrix properties (namely trace) that
σ2
1 + σ2

2 + · · ·+ σ2
p = λ1 + λ2 + · · ·+ λp.

▶ So the total variance of X still exists in PX . AKA, there is no
information loss in principal components (at least, to this point
of our discussion...)
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Principal Components and Geometry

▶ A couple of geometric asides

▶ Not only is there no information loss, it is also true that distance
between observations in the original data are preserved in the
PCA-transformed space.

▶ Angles between vectors are also preserved.

▶ In fact, PCA is simply an orthogonal rotation about the origin.
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Principal Components

▶ Furthermore, we can easily figure out the “proportion of variance
explained” by any one component via λi∑p

j=1 λj
= VarZi

“total variance”

▶ Brings us to an interesting point...

▶ Suppose once we get to the kth principal component, we see the
percent of variance explained as quite small, say 0.001.

▶ Can we then toss out that principal component? Along with the
remaining principal components (which by definition will have
smaller λ)?
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Principal Components

▶ NOTE: THIS is where the dimensionality reduction occurs in
PCA

▶ Since we transform p variables (X) into p variables (Z), it is only
when we toss out principal components that we reduce the
dimensionality of the data.

▶ It is also the only point at which we experience a loss of
information from the original data.

▶ But also note: even if we only keep one principal component
(transforming from p-variate to univariate data) we don’t actually
remove any of our original measurements. All p original variables
are needed to calculate Z1 = γ11X1 + γ12X2 + · · ·+ γ1pXp.
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PCA and Scaling

▶ BIG BIG NOTE: PCA is NOT scale invariant

▶ As we’ll see in an example, this has huge implications...notably,
any variable with large variance (relative to the rest) will
dominate the first principal component.

▶ In most cases, this is undesirable. Most commonly, you will
need/want to scale your data to have mean 0, variance 1 (almost
certainly when your measures are on vastly different scales).

▶ This amounts to performing an eigendecomposition on the
correlation matrix rather than the covariance matrix.
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PCA: How many components?

▶ So how do we choose how many principal components to keep?

▶ There are several common options, we’ll discuss three:

1. Cumulative proportion/percent of variance
▶ Keep number of components such that, say, 90% (or 95%, or

80%, etc) of the variance from original data is retained

2. Kaiser criterion

▶ Keep all λj ≥ λ̄ where λ̄ =
∑p

j=1 λj

p
. Note this is further simplified

if the data is scaled (mean 0, variance 1) since λ̄ = p
p
= 1.

3. Scree plot
▶ Plot the (monotonically decreasing) eigenvalues, look for an

‘elbow’, or plateauing
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Phew...

▶ And finally, an example...

Jeffrey L. Andrews Lecture (Sub) DATA 311 PCA 22 / 1



PCA on Heptathlon Data

> matrix(rownames(heptathlon)[1:6], ncol=1)

[,1]

[1,] "Joyner-Kersee (USA)"

[2,] "John (GDR)"

[3,] "Behmer (GDR)"

[4,] "Sablovskaite (URS)"

[5,] "Choubenkova (URS)"

[6,] "Schulz (GDR)"

> print(heptathlon[1:6,], row.names=FALSE)

hurdles highjump shot run200m longjump javelin run800m score

12.69 1.86 15.80 22.56 7.27 45.66 128.51 7291

12.85 1.80 16.23 23.65 6.71 42.56 126.12 6897

13.20 1.83 14.20 23.10 6.68 44.54 124.20 6858

13.61 1.80 15.23 23.92 6.25 42.78 132.24 6540

13.51 1.74 14.76 23.93 6.32 47.46 127.90 6540

13.75 1.83 13.50 24.65 6.33 42.82 125.79 6411
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Heptathlon Scoring1

▶ Some notes on heptathlon scoring — it’s not simple .

▶ The heptathlon scoring system was devised by Dr. Karl Ulbrich, a
Viennese mathematician.

▶ There is designated “standard” performance (for example,
approximately 1.82 m for the high jump) scores 1000 points.

▶ Each event also has a minimum recordable performance level
(e.g. 0.75 m for the high jump), corresponding to zero points.

▶ Then...

1https://en.wikipedia.org/wiki/Heptathlon
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Heptathlon Scoring1

▶ Running events (200m, 800m, 100m hurdles)

P = a(b − T )c

▶ Jumping events (high, long)

P = a(M − b)c

▶ Throwing events (shotput, javelin)

P = a(D − b)c

1https://en.wikipedia.org/wiki/Heptathlon
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Scoring in General

▶ As a general concept, fairly combining scores from several
sporting disciplines seems tricky

▶ But in effect, we want to find a scoring system that best
separates the participants

▶ In more statistical lingo, we want to find a single variable (made
of the original measures) which will provide the bulk of the
variation present in the data

▶ In other words, PCA can suggest a different (simpler?) scoring
system! We remove the score variable and work with the
remaining...
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PCA on Unscaled Measures

> pcahepu <- prcomp(heptathlon[,-8])

> plot(pcahepu, type="lines")
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PCA on Unscaled Measures

▶ “rotation” are the eigenvectors, aka coefficients of the linear
combo, aka component “loadings”

> pcahepu$rotation[,1:3]

PC1 PC2 PC3

hurdles 0.069508692 -0.0094891417 0.22180829

highjump -0.005569781 0.0005647147 -0.01451405

shot -0.077906090 0.1359282330 -0.88374045

run200m 0.072967545 -0.1012004268 0.31005700

longjump -0.040369299 0.0148845034 -0.18494319

javelin 0.006685584 0.9852954510 0.16021268

run800m 0.990994208 0.0127652701 -0.11655815

▶ What do you notice?
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PCA on Unscaled Measures

> round(pcahepu$rotation[,1:3], 2)

PC1 PC2 PC3

hurdles 0.07 -0.01 0.22

highjump -0.01 0.00 -0.01

shot -0.08 0.14 -0.88

run200m 0.07 -0.10 0.31

longjump -0.04 0.01 -0.18

javelin 0.01 0.99 0.16

run800m 0.99 0.01 -0.12

▶ What do you notice?
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PCA on Scaled Measures

> pcahep <- prcomp(heptathlon[,-8], scale.=TRUE)

> plot(pcahep, type="lines")
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PCA on Scaled Measures

> round(pcahep$rotation[,1:3], 2)

PC1 PC2 PC3

hurdles 0.45 -0.16 -0.05

highjump -0.38 0.25 0.37

shot -0.36 -0.29 -0.68

run200m 0.41 0.26 0.08

longjump -0.46 0.06 -0.14

javelin -0.08 -0.84 0.47

run800m 0.37 -0.22 -0.40

▶ What do you notice?
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PCA on Scaled Measures

> summary(pcahep)

Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6 PC7

Standard deviation 2.1119 1.0928 0.72181 0.67614 0.49524 0.27010 0.2214

Proportion of Variance 0.6372 0.1706 0.07443 0.06531 0.03504 0.01042 0.0070

Cumulative Proportion 0.6372 0.8078 0.88223 0.94754 0.98258 0.99300 1.0000

▶ Scree plot suggests probably 2, most criterion would probably
look at 2, 3, or 4
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PCA on Scaled Measures

▶ Also contained in the pca object as “x” are what’s commonly
referred to as ‘scores’. AKA, the transformed observations!

> head(pcahep$x)

PC1 PC2 PC3 PC4 PC5 PC6 PC7

Joyner-Kersee (USA) -4.121448 -1.24240435 -0.3699131 -0.02300174 0.4260062 -0.33932922 0.3479213

John (GDR) -2.882186 -0.52372600 -0.8974147 0.47545176 -0.7030659 0.23808730 0.1440158

Behmer (GDR) -2.649634 -0.67876243 0.4591767 0.67962860 0.1055252 -0.23919071 -0.1296478

Sablovskaite (URS) -1.343351 -0.69228324 -0.5952704 0.14067052 -0.4539282 0.09180564 -0.4865780

Choubenkova (URS) -1.359026 -1.75316563 0.1507013 0.83595001 -0.6871948 0.12630397 0.2394820

Schulz (GDR) -1.043847 0.07940725 0.6745305 0.20557253 -0.7379335 -0.35578939 -0.1034143
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PCA on Scaled Measures

▶ Which we could visualize by a pairs plot, say
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▶ Or perhaps better in a bivariate form...
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PCA on Scaled Measures
> biplot(pcahep)
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Back to the task...

▶ How does the first variable function as a scoring system?

▶ Because of the sign, minimizing would be the goal. For PCA, the
sign of the entire component is arbitrary. Opposite signs within a
component are meaningful, however.

▶ Thus, we can multiply an entire component by -1 without
changing the underlying mathematics.
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PCA on Scaled Measures

> round(-pcahep$rotation[,1], 2)

hurdles highjump shot run200m longjump javelin run800m

-0.45 0.38 0.36 -0.41 0.46 0.08 -0.37

> print(cbind(-sort(pcahep$x[,1]), rownames(heptathlon), heptathlon$score))

[,1] [,2] [,3]

Joyner-Kersee (USA) "4.12144762636023" "Joyner-Kersee (USA)" "7291"

John (GDR) "2.88218593484013" "John (GDR)" "6897"

Behmer (GDR) "2.64963376599126" "Behmer (GDR)" "6858"

Choubenkova (URS) "1.35902569554282" "Sablovskaite (URS)" "6540"

Sablovskaite (URS) "1.34335120967757" "Choubenkova (URS)" "6540"

Dimitrova (BUL) "1.18645383210095" "Schulz (GDR)" "6411"

Fleming (AUS) "1.10038563857154" "Fleming (AUS)" "6351"

Schulz (GDR) "1.04384747092169" "Greiner (USA)" "6297"

Greiner (USA) "0.92317363886205" "Lajbnerova (CZE)" "6252"

Bouraga (URS) "0.759819023916292" "Bouraga (URS)" "6252"

Wijnsma (HOL) "0.556268302151919" "Wijnsma (HOL)" "6205"

Lajbnerova (CZE) "0.530250688783237" "Dimitrova (BUL)" "6171"

Yuping (CHN) "0.13722543980327" "Scheider (SWI)" "6137"

Braun (FRG) "-0.0037742225569839" "Braun (FRG)" "6109"
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PCA on Scaled Measures
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PCA on Scaled Measures

Scheider (SWI) "-0.015461226409337" "Ruotsalainen (FIN)" "6101"

Ruotsalainen (FIN) "-0.0907477089383147" "Yuping (CHN)" "6087"

Hagger (GB) "-0.171128651449238" "Hagger (GB)" "5975"

Brown (USA) "-0.51925264574111" "Brown (USA)" "5972"

Hautenauve (BEL) "-1.08569764619083" "Mulliner (GB)" "5746"

Mulliner (GB) "-1.12548183277136" "Hautenauve (BEL)" "5734"

Kytola (FIN) "-1.44705549915266" "Kytola (FIN)" "5686"

Geremias (BRA) "-2.01402962042439" "Geremias (BRA)" "5508"

Hui-Ing (TAI) "-2.88029863527855" "Hui-Ing (TAI)" "5290"

Jeong-Mi (KOR) "-2.97011860698208" "Jeong-Mi (KOR)" "5289"

Launa (PNG) "-6.27002197162809" "Launa (PNG)" "4566"
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PCA on Scaled Measures

> head(heptathlon)

hurdles highjump shot run200m longjump javelin run800m score

Joyner-Kersee (USA) 12.69 1.86 15.80 22.56 7.27 45.66 128.51 7291

John (GDR) 12.85 1.80 16.23 23.65 6.71 42.56 126.12 6897

Behmer (GDR) 13.20 1.83 14.20 23.10 6.68 44.54 124.20 6858

Sablovskaite (URS) 13.61 1.80 15.23 23.92 6.25 42.78 132.24 6540

Choubenkova (URS) 13.51 1.74 14.76 23.93 6.32 47.46 127.90 6540

Schulz (GDR) 13.75 1.83 13.50 24.65 6.33 42.82 125.79 6411

> tail(heptathlon)

hurdles highjump shot run200m longjump javelin run800m score

Hautenauve (BEL) 14.04 1.77 11.81 25.61 5.99 35.68 133.90 5734

Kytola (FIN) 14.31 1.77 11.66 25.69 5.75 39.48 133.35 5686

Geremias (BRA) 14.23 1.71 12.95 25.50 5.50 39.64 144.02 5508

Hui-Ing (TAI) 14.85 1.68 10.00 25.23 5.47 39.14 137.30 5290

Jeong-Mi (KOR) 14.53 1.71 10.83 26.61 5.50 39.26 139.17 5289

Launa (PNG) 16.42 1.50 11.78 26.16 4.88 46.38 163.43 4566
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