


Motivation

» Changing gears to dimensionality reduction, and in particular an
unsupervised method for doing so.

> We will eventually bring this back around to supervised learning
in the next lecture

» Note: dimensionality reduction is NOT (necessarily) the same as
variable selection /feature reduction/etc. This will hopefully
become clear while we progress...
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Motivation

» Where we'll go with this on the application side...

» The heptathlon is a track and field competition with several
(seven, specifically) running, throwing, and jumping events.

» The scoring system is...complex (we will outline it later). Can we
use this particular form of dimensionality reduction to devise a
‘simpler’ scoring system?

» But first, let's get technical...
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Basic Idea

» We have p predictors X1, Xp,..., X,

» We will seek p ‘new’ variables, say 71, 25, ...,Z, that
1. are linear combinations of X1, Xa,..., X,
2. are uncorrelated (that is, Cor(Z;, Zx) = 0 for all j # k)
3. provide the bulk of the variation (aka, information) in
X1, X2, ..., Xp within the first few Z;'s
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Simple Bivariate Example

» Suppose we have the following data
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Simple Bivariate Example

» We can note

> cov(cbind(x1l, x2))
x1 x2

x1 7.616567 14.78788

x2 14.787881 29.46383

> cor(cbind(x1l, x2))
x1 x2

x1 1.0000000 0.9871468

x2 0.9871468 1.0000000
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Simple Bivariate Example

» Now, suppose we create two new variables as linear combos of
X1 and X3, namely...
> 71 = .45X; + .90X;
> 7, = .90X; — .45X;

> Note that with our current toolbox, this would seem to be a
fairly random choice of coefficients for the linear combos...but
let's see what the transformed data looks like...
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Simple Bivariate Example

» Scatterplot of Z; and 2,
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Simple Bivariate Example

» And further note

> cov(cbind(zl, z2))

z1 z2
z1 37.3862401 0.1354968
z2 0.1354968 0.1576611

> cor(cbind(zl, z2))

z1 z2
z1 1.00000000 0.05580986
z2 0.05580986 1.00000000
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Some Linear Algebra

> A square p X p matrix A is said to have an eigenvalue A with

corresponding eigenvector vy # 0if

Ay = \y

» If A is symmetric, then A has p eigenvalues A1, Ao, .

corresponding eigenvectors vy, Yo, --,Yp

» Example on board...
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Some Linear Algebra

> If Ais p x p symmetric with eigenvalues, then we can write
A =PAP’

where all matrices are p X p.

» Further, note that

P=[vi v - 7l

» and A is a diagonal matrix with the eigenvalues A1, Ap, ..., Ap
along the diag.
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UBC

Some Linear Algebra 5@:

> Also, PPT =P'P = lp, AKA the columns of P are orthonormal
> AKA, v/ v, =0forall j # k and v/ v; =1

» Repeat example in matrix form on board...
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Some Linear Algebra

» A symmetric p X p matrix A is positive semi-definite (psd) if

cTAG>0 V ¢

» If A is psd, then \; > 0 for all .

» Note that covariance matrices are psd, and therefore have p
non-negative eigenvalues.
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Principal Components

» Recall from beginning of these slides...

» We will seek p ‘new’ variables, say 71, 25, ...,Z, that

1. are linear combinations of Xi, Xo,..., X,

2. are uncorrelated (that is, Cor(Z;, Zx) = 0 for all j # k)

3. provide the bulk of the variation (aka, information) in
X1, X2, ..., Xp within the first few Z;'s
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Principal Components
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» Suppose covariance matrix X has eigenvalues ordered such that

A1 2> A2 > - > Ap > 0 with corresponding eigenvectors

Y1725 - 77p'

» It can be shown that «; (aka, the eigenvector corresponding to

the largest eigenvalue of X) provides coefficients such that
Var(y{ X) is maximized subject to the constraint v{~; =1

» And furthermore, v, maximizes Var(’szX) subject to 7;72 =1

AND ~v]~; =0

» Annnnnd so on for the remaining eigenvectors...
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Principal Components

» In summary, the eigendecomposition of X provides the solution
for our desired properties for principal components. AKA, we can
define Z; = v;X.

» So the eigenvectors provide the coefficients for the linear combo,
but the eigenvalues are interesting too!

» Note that the diagonal of X contains the variance of each
variable. Summing that up, 02 + 03 + -+ + af,, provides a
measure of ‘total variance’

» It can be shown through matrix properties (namely trace) that
of+o5+--+os=M+X+ -+ X

» So the total variance of X still exists in PX. AKA, there is no
information loss in principal components (at least, to this point

of our discussion...)
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Principal Components and Geometry

» A couple of geometric asides

» Not only is there no information loss, it is also true that distance
between observations in the original data are preserved in the
PCA-transformed space.

» Angles between vectors are also preserved.

» In fact, PCA is simply an orthogonal rotation about the origin.
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Principal Components

» Furthermore, we can easily figure out the “proportion of variance

. " . - VarZ;
I I
explained” by any one component via 7%~ Tiotal variance’

» Brings us to an interesting point...

> Suppose once we get to the k' principal component, we see the
percent of variance explained as quite small, say 0.001.

» Can we then toss out that principal component? Along with the
remaining principal components (which by definition will have
smaller \)?
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Principal Components :g@-—'cs

» NOTE: THIS is where the dimensionality reduction occurs in
PCA

» Since we transform p variables (X) into p variables (Z), it is only
when we toss out principal components that we reduce the
dimensionality of the data.

> |t is also the only point at which we experience a loss of
information from the original data.

» But also note: even if we only keep one principal component
(transforming from p-variate to univariate data) we don't actually
remove any of our original measurements. All p original variables
are needed to calculate Z; = 711 X1 + 712 X0 + - - - + 71 Xp.
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PCA and Scaling ==

» BIG BIG NOTE: PCA is NOT scale invariant

> As we'll see in an example, this has huge implications...notably,
any variable with large variance (relative to the rest) will
dominate the first principal component.

» In most cases, this is undesirable. Most commonly, you will
need/want to scale your data to have mean 0, variance 1 (almost
certainly when your measures are on vastly different scales).

» This amounts to performing an eigendecomposition on the
correlation matrix rather than the covariance matrix.
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PCA: How many components?

» So how do we choose how many principal components to keep?

» There are several common options, we'll discuss three:

1. Cumulative proportion/percent of variance

> Keep number of components such that, say, 90% (or 95%, or
80%, etc) of the variance from original data is retained

2. Kaiser criterion
> Keep all \j > X where \ =
if the data is scaled (mean 0, variance 1) since A = P=1

P 5
@. Note this is further simplified

3. Scree plot

> Plot the (monotonically decreasing) eigenvalues, look for an
‘elbow’, or plateauing
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» And finally, an example...
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PCA on Heptathlon Data

> matrix(rownames (heptathlon) [1:6], ncol=1)
[,1]
[1,]1 "Joyner-Kersee (USA)"
[2,] "John (GDR)"
[3,] "Behmer (GDR)"
[4,] "Sablovskaite (URS)"
[5,] "Choubenkova (URS)"
[6,] "Schulz (GDR)"
> print(heptathlon[1:6,], row.names=FALSE)
hurdles highjump shot run200m longjump javelin run800m score
12.69 1.86 15.80 22.56 7.27 45.66 128.51 7291

12.85 1.80 16.23 23.65 6.71 42.56 126.12 6897
13.20 1.83 14.20 23.10 6.68 44.54 124.20 6858
13.61 1.80 15.23  23.92 6.25 42.78 132.24 6540
13.51 1.74 14.76  23.93 6.32 47.46 127.90 6540
13.75 1.83 13.50 24.65 6.33 42.82 125.79 6411
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Heptathlon Scoring?

» Some notes on heptathlon scoring — it's not simple .

» The heptathlon scoring system was devised by Dr. Karl Ulbrich, a
Viennese mathematician.

» There is designated “standard” performance (for example,
approximately 1.82 m for the high jump) scores 1000 points.

» Each event also has a minimum recordable performance level
(e.g. 0.75 m for the high jump), corresponding to zero points.

» Then...

https://en.wikipedia.org/wiki/Heptathlon
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Heptathlon Scoring?
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Event a
200 metres 4.99087
800 metres 0.11183
100 metres hurdles | 9.23076

High jump 1.84523
Long jump 0.188807
Shot put 56.0211
Javelin throw 15.9803

» Running events (200m, 800m, 100m hurdles)
P=a(b—T)

» Jumping events (high, long)
P =a(M — b)*

» Throwing events (shotput, javelin)
P =a(D — b)°

https: //en.wikipedia.org/wiki/Heptathlon
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Scoring in General

» As a general concept, fairly combining scores from several
sporting disciplines seems tricky

» But in effect, we want to find a scoring system that best
separates the participants

» In more statistical lingo, we want to find a single variable (made
of the original measures) which will provide the bulk of the
variation present in the data

» In other words, PCA can suggest a different (simpler?) scoring
system! We remove the score variable and work with the
remaining...
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PCA on Unscaled Measures

> pcahepu <- prcomp(heptathlon[,-8])
> plot(pcahepu, type="lines")

pcahepu

0
]
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B
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PCA on Unscaled Measures

» ‘“rotation” are the eigenvectors, aka coefficients of the linear

combo, aka component “loadings”

> pcahepu$rotation[,1:3]

hurdles 0]
highjump -0.
shot -0.
run200m 0.
longjump -0.
javelin O.
run800m 0.

» What do you notice?
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PC1

.069508692

005569781
077906090
072967545
040369299
006685584
990994208

-0.
0.
0.

.1012004268

.0148845034

.9852954510

.0127652701

O O O

PC2
0094891417
0005647147
1359282330
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.22180829
.01451405
.88374045
.31005700
.18494319
.16021268
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PCA on Unscaled Measures

> round(pcahepu$rotation[,1:3], 2)

PC1
hurdles 0.07
highjump -0.01
shot -0.08
run200m  0.07
longjump -0.04
javelin 0.01
run800m  0.99

» What do you
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0.
0.
0.
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PC2
01
00
14
10
.01
.99
.01

PC3
.22
.01
.88
.31
.18
.16
.12

notice?

Lecture (Sub)



(=
0

PCA on Scaled Measures

> pcahep <- prcomp(heptathlon[,-8], scale.=TRUE)
> plot(pcahep, type="lines")

pcahep
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PCA on Scaled Measures

> round(pcahep$rotation[,1:3], 2)
PC1 PC2

hurdles 0.45 -0.
highjump -0.38 O.
shot -0.36 -0.
run200m 0.41 O.
longjump -0.46 O.
javelin -0.08 -0.
run800m 0.37 -0.

» What do you
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25
29
26
06
84
22

PC3
.05
.37
.68
.08
.14
.47
.40

notice?
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PCA on Scaled Measures 22

> summary (pcahep)
Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6 PC
Standard deviation 2.1119 1.0928 0.72181 0.67614 0.49524 0.27010 0.221
Proportion of Variance 0.6372 0.1706 0.07443 0.06531 0.03504 0.01042 0.007
Cumulative Proportion 0.6372 0.8078 0.88223 0.94754 0.98258 0.99300 1.000

» Scree plot suggests probably 2, most criterion would probably
look at 2, 3, or 4
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PCA on Scaled Measures

» Also contained in the pca object as

X are w

é;}

hat's commonly

referred to as ‘scores’. AKA, the transformed observations!

> head(pcahep$x)

Joyner-Kersee (USA) -4.
John (GDR) -2.
Behmer (GDR) -2.

Sablovskaite (URS) -1.
Choubenkova (URS) -1.
Schulz (GDR) -1.
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PC1
121448
882186
649634
343351
359026
043847

PC2

.24240435
.52372600
.67876243
.69228324
.75316563
.07940725
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-0.
-0.
0.
-0.
0.
0.

PC3
3699131
8974147
4591767
5952704
1507013
6745305

o

O O © O O

PC4
.02300174 O.
.47545176 -0.
.67962860 O.
.14067052 -0.
.83595001 -0.
.20557253 -0.

1

PC
426006
703065
105525
453928
687194
737933
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PCA on Scaled Measures
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» Which we could visualize by a pairs plot, say

» Or perhaps better in a bivariate form...
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PCA on Scaled Measures

> bi (pcahep)

Hagdiayiegpuve (BEL

Wijnsma (HOL)

Kytola (FINEONg-Mi (KOR)
highjump Greiner (USA) yrola (FINF run200m

~ Bouraynumawmwner(eﬁ) HWW
T rmivg (AUS)
S Schuz(GEBF Geremias (BRA)
La;qymv{i“pz

ngjump

Johi (GDm//
john (GI
sohmer SBRYskait rungoom

hurdles

shot

Joyner-Kersee (USA)

javelin
Launa (P
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Back to the task...

» How does the first variable function as a scoring system?

» Because of the sign, minimizing would be the goal. For PCA, the
sign of the entire component is arbitrary. Opposite signs within a
component are meaningful, however.

» Thus, we can multiply an entire component by -1 without
changing the underlying mathematics.

Jeffrey L. Andrews Lecture (Sub)



PCA on Scaled Measures 2B
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> round(-pcahep$rotation[,1], 2)

hurdles highjump shot run200m longjump javelin run800m

-0.45 0.38 0.36 -0.41 0.46 0.08 -0.37
> print(cbind(-sort(pcahep$x[,1]), rownames(heptathlon), heptathlon$score)

[,1] [,2] [,3]

Joyner-Kersee (USA) "4.12144762636023" "Joyner-Kersee (USA)" "7291"
John (GDR) "2.88218593484013" "John (GDR)" "6897"
Behmer (GDR) "2.64963376599126" "Behmer (GDR)" "6858"
Choubenkova (URS) "1.35902569554282" "Sablovskaite (URS)" "6540"
Sablovskaite (URS) "1.34335120967757" "Choubenkova (URS)"  "6540"
Dimitrova (BUL) "1.18645383210095" "Schulz (GDR)" "6411"
Fleming (AUS) "1.10038563857154" "Fleming (AUS)" "6351"
Schulz (GDR) "1.04384747092169" "Greiner (USA)" "6297"
Greiner (USA) "0.92317363886205" "Lajbnerova (CZE)" "6252"
Bouraga (URS) "0.759819023916292" "Bouraga (URS)" "6252"
Wijnsma (HOL) "0.556268302151919" "Wijnsma (HOL)" "6205"
Lajbnerova (CZE) "0.530250688783237" "Dimitrova (BUL)" "6171"
Yuping (CHN) "0.13722543980327" "Scheider (SWI)" "6137"
Braun (FRG) "-0.0037742225569839" "Braun (FRG)" "6109"
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on Scaled Measures
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~pcahepsx], 1]
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PCA on Scaled Measures

Scheider (SWI)
Ruotsalainen (FIN)
Hagger (GB)
Brown (USA)
Hautenauve (BEL)
Mulliner (GB)
Kytola (FIN)
Geremias (BRA)
Hui-Ing (TAI)
Jeong-Mi (KOR)
Launa (PNG)
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"-0.
"-0.
"-0.
"-0.
"-1,
.12548183277136"
"-1.
"-2.
"-2.
"-2.
"-6.

n_q

015461226409337"
0907477089383147"
171128651449238"
51925264574111"
08569764619083"

44705549915266"
01402962042439"
88029863527855"
97011860698208"
27002197162809"
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"Ruotsalainen (FIN)"
"Yuping (CHN)"
"Hagger (GB)"
"Brown (USA)"
"Mulliner (GB)"
"Hautenauve (BEL)"
"Kytola (FIN)"
"Geremias (BRA)"
"Hui-Ing (TAI)"
"Jeong-Mi (KOR)"
"Launa (PNG)"

"6101"
"6087"
"5975"
"5972"
"5746"
"5734"
"5686"
"5508"
"5290"
n 5289"
"4566"
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PCA on Scaled Measures 22

> head (heptathlon)
hurdles highjump shot run200m longjump javelin run800

Joyner-Kersee (USA) 12.69 1.86 15.80 22.56 7.27 45.66 128.5
John (GDR) 12.85 1.80 16.23 23.65 6.71 42.56 126.1
Behmer (GDR) 13.20 1.83 14.20 23.10 6.68 44.54 124.2
Sablovskaite (URS) 13.61 1.80 15.23 23.92 6.25 42.78 132.2
Choubenkova (URS) 13.51 1.74 14.76  23.93 6.32 47.46 127.9
Schulz (GDR) 13.75 1.83 13.50 24.65 6.33 42.82 125.7

> tail (heptathlon)
hurdles highjump shot run200m longjump javelin run800m s

Hautenauve (BEL) 14.04 1.77 11.81 25.61 5.99 35.68 133.90
Kytola (FIN) 14.31 1.77 11.66 25.69 5,75 39.48 133.35
Geremias (BRA) 14.23 1.71 12.95 25.50 5.50 39.64 144.02
Hui-Ing (TAI) 14.85 1.68 10.00 25.23 5.47 39.14 137.30
Jeong-Mi (KOR) 14.53 1.71 10.83 26.61 5.50 39.26 139.17
Launa (PNG) 16.42 1.50 11.78 26.16 4.88 46.38 163.43
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