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Summary This lab will outline some of the basics in R, as well as introduce R markdown
as a file format for making dynamic documents for assignments. This lab assignment is not
for marks. In the future, your assignments will involve creating Rmd files and submitting the
resulting HTML outputs as your work. However, for this lab, there’s no need to submit
anything. If you are confident in your ability to achieve the learning outcomes, proceed
directly to the exercises and confirm that you can complete them successfully.

Learning outcomes

By the end of this lab students will be able to:

• Calculate MSE for both testing and training data in the Regression Setting
• gain an understanding of the bias-variance trade-off (and how they relate to the flexibility

of the model)
• gain an understanding of the relationship and general trends of the 𝑀𝑆𝐸𝑡𝑟 vs. 𝑀𝑆𝐸𝑡𝑒
• Fit a simile linear regression model
• Fit a multiple linear regression model

Topics roughly map to lecture 3, 4, and 5
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For reproducibility purpose, I have set a seed (set.seed()) for R’s random number generator.
If you follow this code for creating these simulations your random numbers (and therefore
subsequent images and calculations) should be identical1 to what I produced within this doc-
ument.

Introduction

Recall our general model for statistical learning

𝑌 = 𝑓(𝑋) + 𝜖 (1)

where:

• 𝑋 are our inputs
• 𝑌 is the numeric output (at least in this setting)
• 𝜖 is the error term (independent of 𝑋 and with mean 0)
• 𝑓 represents the systematic information 𝑋 provides about 𝑌 .

Our goal is to find an ̂𝑓(𝑋) that approximates the true function 𝑓(𝑥) as well as possible. In
this lab we will be discussing metrics for assessing model accuracy in the supervised setting.
This corresponds to Section 2.2 of the ISLR2 textbook. By the end of it you should gain an
understanding of the

• bias-variance trade-off (and how they relate to the flexibility of the model)
• the relationship and general trends of the 𝑀𝑆𝐸𝑡𝑟 vs. 𝑀𝑆𝐸𝑡𝑒

Measuring the quality of fit

For a continuous response variable, in the supervised setting, a natural measure of quality is
how close our predict ̂𝑦 = ̂𝑓(𝑥) values compare to the “true” 𝑦s. In this context, the most
commonly-used measure is the mean squared error (MSE). In words, the MSE is the average
of all of the squared differences between the true values 𝑦𝑖 and the the predicted values ̂𝑓(𝑥𝑖)
(the smaller the better!).

1R adjusted set.seed() and other random number generator defaults starting in R version 3.6.0. As such,
please ensure the R installation you have is >= 3.6.0. — you can see what version is installed in the header
at startup, or type the following into your console: R.Version()$version.string).
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MSE for continuous response

When MSE is calculated using the training data X𝑇 𝑟 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), ..., (𝑥𝑛, 𝑦𝑛)} =
{𝑥𝑖, 𝑦𝑖}𝑛

1 we call it the training MSE

𝑀𝑆𝐸𝑇 𝑟 = 1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − ̂𝑓(𝑥𝑖))2

When MSE is calculated using the testing data X𝑇 𝑒 = {(𝑥𝑛+1, 𝑦𝑛+1), ..., (𝑥𝑛+𝑚, 𝑦𝑛+𝑚)} =
{𝑥𝑖, 𝑦𝑖}𝑚

1 we call it the test MSE:

𝑀𝑆𝐸𝑇 𝑒 = 1
𝑚

𝑚
∑
𝑖=1

(𝑦𝑖 − ̂𝑓(𝑥𝑖))2

where ̂𝑓(𝑥𝑖) = ̂𝑦𝑖 is the prediction for the 𝑖th input 𝑥𝑖, and 𝑦𝑖 is the response actually observed
(ie “truth”).

Recall from lecture that we are more interested on how our models perform on the testing set
rather than the training set. In other words we would like our models to perform well on data
it has never “seen” before. Hence desirable models are those which provide the lowest test
MSE, as opposed to the lowest training MSE. If you have access to test data (i.e. a set of data
that have not been used to train the model), we can simply evaluate 𝑀𝑆𝐸𝑇 𝑒 for all methods
and select the one which yields the lowest value.

Sometimes we are presented with the situation wherein no test data is available in which case
we cannot calculate the MSE𝑇 𝑒. In this case you might be tempted to choose the model
which minimizes the MSE𝑇 𝑟. As discussed in lecture (and exemplified in ISLR 2.21, 2.12), the
model which obtains the lowest MSE𝑇 𝑒 is not necessarily the model which obtains the lowest
MSE𝑇 𝑟.

Side note: Later on in the course we will look at how we can use cross validation to fudge a
testing data set as a means of providing an estimate the test MSE. In our considerations today,
we will look at simulated data in which we can easily generate new testing observations and
calculate MSE𝑇 𝑒

Bias-Variance Tradeoff

For a given test point 𝑥, it can be shown2 that the expected test MSE, is given by:

E[(𝑦 − ̂𝑓(𝑥))2] = Var( ̂𝑓(𝑥)) + (Bias[ ̂𝑓(𝑥)])2 + Var(𝜖) (2)

That is, the reducible error in the MSE can actually be decomposed into two competing
forces:

2this post does a good job of explaining it, but it is heavier on the theory I expect you to follow for this course
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• Var( ̂𝑓(𝑥)) which indicates how much ̂𝑓 changes from training set to training set (models
that are very flexible will have high variance because they fit too closely to the data at
hand <– overfitting)

• Bias[ ̂𝑓(𝑥)]) which represents the difference between the true model and the average value
of all predictions at 𝑥 across all possible training sets (models that are too simple to
explain the complex phenomenon will systemically be “off the mark” <– underfitting)

Bias[ ̂𝑓(𝑥)]) = E[ ̂𝑓(𝑥)] − 𝑓(𝑥)

Simulation 1

To get a sense of what is referred to as the bias-variance trade-off, let’s consider the contrived
example in which we know what the true generating function 𝑓 looks like. First, we’ll simu-
late our training data by uniformly generating 𝑋 values, and then assuming an exponential
relationship between 𝑋 and 𝑌 with standard normal (mean 0, variance 1) errors. In other
“words”,

𝑌 = exp(𝑋) + 𝜖 (3)

where 𝜖 ∼ Normal(𝜇 = 0, 𝜎 = 1).

set.seed(23418)
x <- sort(runif(30,0,3))
y <- exp(x) + rnorm(length(x))
plot(x, y)
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Now fit a standard linear model, and add the fitted line ( ̂𝑓) to the plot in red:
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linmod <- lm(y ~ x)
plot(x , y)
abline(linmod, col="red", lwd=2)
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Next, we fit a local polynomial model using the loess function in R and add it in blue. We
are unlikely to cover these in this course — just consider it a relatively flexible model. The
span argument controls the degree of smoothing. We we fit a local polynomial with medium
flexibility (store in poly1) and one with high flexibility (which we’ll call poly2). The later
approximately mimics the “connect-the-dots” scenario. N.B. you will get some errors when
you fit this model (essentially warning us that this model is not reasonable) but just ignore
them.

poly1 <- loess(y~x, span=0.75)
poly2 <- loess(y~x, span=0.1)
plot(x, y)
lines(x, predict(poly1), col="blue", lwd=3)
lines(x, predict(poly2), col="green", lwd=3)
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Now we can calculate the training MSE for each model by utilizing the predict() function. By
default, predict() simply provides ̂𝑦 for the previously observed predictors (aka, the training
data). We’ll use round() to print the MSE with 2 decimal places.

trmse_red <- mean((y - predict(linmod))^2)
trmse_blue <- mean((y - predict(poly1))^2)
trmse_green <- mean((y - predict(poly2))^2)
round(trmse_red, 2)
round(trmse_blue, 2)
round(trmse_green, 2)

I have suppressed the output above and stored it in a table:

Model MSE𝑡𝑟𝑎𝑖𝑛

linear (red) 4.37
med flexibility (blue) 0.83

connect-the-dots (green) 0

Now we will generate 10 new points from the same simulation and plot them alongside our
three fitted models:

set.seed(41368)
xnew <- sort(runif(10,0,3))
ynew <- exp(xnew) + rnorm(length(xnew))
plot(x, y)
abline(linmod, col="red", lwd=3)
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lines(x, predict(poly1), col="blue", lwd=3)
lines(x, predict(poly2), col="green", lwd=3)
points(xnew, ynew, pch=15, col="purple", cex=1.5)
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We can calculate the test MSE by giving the predict function the new data. Note that
predict specifically wants new data as a data.frame structure, and will not accept a vector
object for newdata — we will run into little issues like this throughout the course.

temse_red <- mean( (ynew - predict(linmod, data.frame(x = xnew)))^2 )
temse_blue <- mean( (ynew - predict(poly1, data.frame(x = xnew)))^2 )
temse_green <- mean((ynew - predict(poly2, data.frame(x = xnew)))^2 )
temse_red
temse_blue
temse_green

Model MSE𝑡𝑒𝑠𝑡 MSE𝑡𝑟𝑎𝑖𝑛

linear (red) 3.32 4.37
med flexibility (blue) 1.56 0.83

connect-the-dots (green) 4.29 0

As noted in lecture, most of the results follow the general rule that testing MSE’s will be larger
than training MSE’s, though by chance this is not currently holding for the linear model.

Exercise Rerun this code with a different seed and see how the results change with additional
simulations!
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Simulation 2

Next let’s simulate data by uniformly generating 𝑋 values between 0 and 2𝜋, and generate 𝑌
values using:

𝑌 = sin(𝑋) + 𝜖 (4)

where 𝜖 ∼ Norm(𝜇 = 0, 𝜎 = 1). To get a sense of what “bias” and “variance” mean in the
context of our fitted models, let’s look at fitted each model 100 different training sets. In
the first figure we plot the first 10 fitted models, while the second figure plots the average
prediction of each method over all of the 100 fitted models for a single test set 𝑋𝑇 𝑒 (remember
each fit was created using a different training set). Notice:
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• The green model (which is the most flexible) has the highest variability. This model
is overfitting, that is, it follows the observations too closely. Thus a change in training
set causes the estimate ̂𝑓 to change considerably. Notice that while the green model is
highly variable, it has low bias. That is, even though a single fitted model does not close
to our generating function 𝑓 , on average the estimate is close the truth.

• In contrast, the red linear model (which is relatively inflexible) has low variance. That
is to say, with each new training set it sees, the fitted model does not change much.
While this model has low variance, it has high bias. Consequently, it will systematically
underestimate/overestimate the true 𝑓 (in black) for certain values of 𝑋. For example,
we can see in the figure below that between the range of 𝑥 = 4 to 5 model is not capturing
the “dip”, thus this model will systematically overestimate 𝑦 in that region on average.
This is a classic example of underfitting; no matter how much data this model learns
from, it can never be persuaded away from a erroneous solution.

• The blue model strikes a nice balance in between. It simultaneously has low variance
and low bias.

Question Which of these models would you expect to have the lowest test MSE?
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Assessing Models: Classification

Let’s now recreate the classification example shown in Lecture 3. Here we’ll simulate an
underlying classification model where the continuous variables are uniformly distributed…

set.seed(4623)
x1 <- runif(100, -1, 1)
x2 <- runif(100, -1, 1)
plot(x1, x2)
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and the group classification probabilities are associated with the X2 variable. Specifically, the
probability of being in “Class 1” is equal to the observation’s value at X2 or 0 when X2 is
negative. Note that loops can, and should, generally be avoided in R. We will often break that
rule in lab in the interest of simplicity, plus the fact that most of you will be more comfortable
with loops rather than R-specific solutions. First, let’s initialize a classification vector of NAs
(missing values)

clas <- rep(NA, length(x2))

Now we will replace each element of that vector with an “observed” classification sampled from
the probability scheme mentioned above.

for(i in 1:length(x2)){
clas[i] <- sample( c(1, 2) , size = 1, prob =c(max(0, x2[i]), min(1 - x2[i], 1)))

}
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Now we can plot the points according to their observed classification, and include the Bayes
Classifier boundary at X2 = 0.5 in blue.

plot(x1, x2, col = clas, pch=16)
abline(h = 0.5, col="blue")
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Furthermore, we can calculate what the observed classification error would be for the Bayes
Classifier (that is, the correct classification model). That model would tell us that if X2 > 0.5,
we should classify as group “1” (black) and if X2 < 0.5 we should classify as group “2” (red).
So we can tabulate that

table(x2 > 0.5, clas)

clas
1 2

FALSE 6 69
TRUE 19 6

And easily pull the misclassifications from that table by looking at the diagonal (in this par-
ticular case).

sum(diag(table(x2 > 0.5, clas))) / length(x2)

[1] 0.12
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This suggests that even using the correct model would result in 12% misclassification on this
particular training set. Note that some models can beat this misclassification rate on the
training set by overfitting. Let’s explore 𝑘-nearest neighbours (KNN) classification. First, we
need to install another package. Enter the following in the command-line.

install.packages("class")

Now, we’ll fit KNN for 𝑘 = 15, 𝑘 = 10, and 𝑘 = 1. Take a look at the help file for knn by
entering ?knn in the console. You can see some discussion surrounding ties in there (which
we covered a little bit in lecture). The knn function takes both a training set and a testing
set. We’ll give it x1 and x2 for both the training set and the testing set to look at MSE for
training.

library("class")
mod15 <- knn(cbind(x1,x2), cbind(x1, x2), clas, k=15, prob=TRUE)
table(clas, mod15)

mod15
clas 1 2

1 16 9
2 5 70

#now misclassifications are on the off diagonal, so...
(length(clas)-sum(diag(table(clas, mod15))))/length(clas)

[1] 0.14

mod10 <- knn(cbind(x1,x2), cbind(x1, x2), clas, k=10, prob=TRUE)
(length(clas)-sum(diag(table(clas, mod10))))/length(clas)

[1] 0.15

mod1 <- knn(cbind(x1,x2), cbind(x1, x2), clas, k=1, prob=TRUE)
(length(clas)-sum(diag(table(clas, mod1))))/length(clas)

[1] 0
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So misclassification rates of 14%, 15%, and 0% on the training data. Compare to Bayes
Classifier! Clearly overfitting at 𝑘 = 1.

Now let’s give a big grid of values for the testing set in order to eventually recreate the contours
shown in lecture.

gridseq <- seq(-1, 1, 0.01)
gridx1 <- rep(gridseq, each=length(gridseq))
gridx2 <- rep(gridseq, length(gridseq))
#We are putting a point at each 0.01 increment in both x1 and x2
plot(gridx1, gridx2, pch=".")
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mod15 <- knn(cbind(x1,x2), cbind(gridx1, gridx2), clas, k=15, prob=TRUE)
mod10 <- knn(cbind(x1,x2), cbind(gridx1, gridx2), clas, k=10, prob=TRUE)
mod1 <- knn(cbind(x1,x2), cbind(gridx1, gridx2), clas, k=1, prob=TRUE)

plot(x1, x2, col = clas, pch=16, main="KNN with k=15")
abline(h = 0.5, col="blue")
conprob <- attr(mod15, "prob")
conpoints <- ifelse(mod15==1, conprob, 1-conprob)
conmat <- matrix(conpoints, length(gridseq), length(gridseq))
contour(gridseq, gridseq, t(conmat), levels=0.5, nlevels=1, add=TRUE, col="black", lwd=3)
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plot(x1, x2, col = clas, pch=16, main="KNN with k=10")
abline(h = 0.5, col="blue")
conprob <- attr(mod10, "prob")
conpoints <- ifelse(mod10==1, conprob, 1-conprob)
conmat <- matrix(conpoints, length(gridseq), length(gridseq))
contour(gridseq, gridseq, t(conmat), levels=0.5, nlevels=1, add=TRUE, col="black", lwd=3)
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plot(x1, x2, col = clas, pch=16, main="KNN with k=1")
abline(h = 0.5, col="blue")
conprob <- attr(mod1, "prob")
conpoints <- ifelse(mod1==1, conprob, 1-conprob)
conmat <- matrix(conpoints, length(gridseq), length(gridseq))
contour(gridseq, gridseq, t(conmat), levels=0.5, nlevels=1, add=TRUE, col="black", lwd=3)
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Those show the plots given in the lecture slides, however I updated to a more visually appealing
and understandable version in the interactive part of the lecture. The commands to get that
version of the visualization require the scales package to play with the opacity of the colours
(so again, you’ll need install.packages("scales") on your machine prior to calling this
code chunk)…

library(scales)
plot(x1, x2, col = clas, pch=16, main="KNN with k=1")
abline(h = 0.5, col="blue")
conprob <- attr(mod1, "prob")
conpoints <- ifelse(mod1==1, conprob, 1-conprob)
conmat <- matrix(conpoints, length(gridseq), length(gridseq))
.filled.contour(gridseq, gridseq, t(conmat), levels=c(0,0.50,1), col=alpha(c("red","black"), 0.1))
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